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Tsallis maximum entropy principle and the law of large numbers

Brian R. La Cour and William C. Schieve
Ilya Prigogine Center for Studies in Statistical Mechanics and Complex Systems, Department of Physics,

The University of Texas at Austin, Austin, Texas 78712
~Received 10 June 2000!

Tsallis has suggested a nonextensive generalization of the Boltzmann-Gibbs entropy, the maximization of
which gives a generalized canonical distribution under special constraints. In this Brief Report, we show that
the generalized canonical distribution so obtained may differ from that predicted by the law of large numbers
when empirical samples are held to the same constraint. This conclusion is based on a result regarding the large
deviation property of conditional measures and is confirmed by numerical evidence.

PACS number~s!: 02.50.Cw, 05.20.Gg, 05.30.Ch
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I. INTRODUCTION

From considerations of multifractals, Tsallis@1# was led
to conjecture a generalization of the Boltzmann-Gibbs
tropy given by

Sq~p!5
1

q21 F12(
i 51

m

pi
qG , ~1!

where p5(p1 , . . . ,pm) is a probability distribution for a
discrete random variable with valuese1 , . . . ,em andq is any
real number different from one.S1 is defined to be the usua
Boltzmann-Gibbs entropy, in agreement with the limitq
→1. ~Boltzmann’s constant is set to one.! Non-Gibbsian dis-
tributions are obtained by extremizing the Tsallis entro
under special constraints, described below, while usingq as
an adjustable parameter. The parameterq typically has no
direct physical interpretation, but when it is used as an
justable parameter the resulting distributions can give s
prisingly good agreement with experimental data in a w
variety of fields@2#. In a few cases,q is uniquely determined
by the constraints of the problem and may thereby bear s
physical interpretation@3,4#.

Although the Tsallis entropy preserves all of the famil
thermodynamic formalism, Curado@5# has noted that this is
true of a much broader class of entropies. Given the my
of possible entropy functions, one is led to ask why the
allis entropy is special, and a natural place to look for a
swers is in the theory of large deviations@6#, which gives a
probabilistic justification for the maximum entropy princip
in terms of a unique entropy function. In this Brief Repo
we compare the probabilities obtained by Tsallis’s maxim
entropy principle with the asymptotic frequencies predic
by large deviation theory~i.e., the law of large numbers!
under similar constraints. We find that the two do not
general agree.

II. TSALLIS MAXIMUM ENTROPY PRINCIPLE

If no constraints are imposed uponp ~other than that it be
nonnegative and normalized!, Sq is readily seen to be ex
tremized bypi51/m[m i . ~The caseq50 is special, asS0 is
a constant function.! This conclusion, independent ofq,
agrees with the usual Boltzmann-Gibbs result and co
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sponds to a microcanonical ensemble. If we viewm as a
sampling distribution, then the empirical distribution of fr
quencies obtained from a random samplex1 , . . . ,xn con-
verges tom almost surely asn grows large. This well-known
result, originally due to Boltzmann@7#, may be viewed as an
example of the~strong! law of large numbers. SinceSq has a
global extremum atm, the distribution predicted by extrem
izing Sq agrees with the actual asymptotic empirical dist
bution.

Placing additional constraints when extremizingSq may
result in a distribution dependent uponq, i.e., one at variance
with that predicted from the Boltzmann-Gibbs caseq51. As
a generalization of the internal energy constraint, Tsallis@8#
has suggested the following constraint be used when extr
izing Sq :

(
i 51

m

~e i2u!pi
q50, ~2!

whereu is a given fixed constant. Forq51 this of course
reduces to the usual expectation value constraint. By extr
izing Eq. ~1! subject to Eq.~2!, one obtains a solution in
general different from the Boltzmann distribution. This sol
tion is given explicitly by

pi}@12~12q!a~e i2u!#1/(12q), ~3!

wherea is chosen such that Eq.~2! is satisfied. It has been
noted that this explicit form of the distribution appears to
more numerically robust than the more common impli
form, for whicha5b/( j 51

m pj
q @9#.

For q51 the constraint on the expectation may be int
pretation as a constraint on the sample mean, the two b
equivalent for large samples. Thus, if we consider rand
samplesx1 , . . . ,xn from m that satisfy

1

n (
k51

n

xk5u, ~4!

then the empirical distributions of such samples will a
proach the Boltzmann distributionpi}e2ae i as n grows
large.

The question arises of whether a similar interpretat
may be made of the constraint in Eq.~2! for qÞ1 and, more
7494 ©2000 The American Physical Society
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importantly, whether the resulting empirical distribution co
verges to that given by Eq.~3!. As our observable is discrete
let f n,i(x1 , . . . ,xn) denote the observed frequency ofe i in
the samplex1 , . . . ,xn . ~There is no obvious interpretatio
for continuous values.! We may interpret Eq.~2! to mean

(
i 51

m

~e i2u! f n,i~x1 , . . . ,xn!q50. ~5!

We will show that random samples drawn fromm that sat-
isfy Eq. ~5! do not in general give rise to empirical distribu
tions that converge to the Tsallis prediction of Eq.~3!.

III. CONDITIONAL CONVERGENCE OF THE EMPIRICAL
DISTRIBUTION

The general problem we are considering is the conv
gence in probability of the empirical frequenciesf n
5( f n,1 , . . . ,f n,m), wheref n is a random vector with domain
$e1 , . . . ,em%n taking values in the convex setP5$p
PRm:pi>0,( i 51

m pi51%. Unconstrained, an infinite random
samplex1 ,x2 , . . . , from m gives rise to a sequence of em
pirical frequencies that converge in probability tom. Sanov’s
theorem@7# gives the large deviation rate function for th
convergence to be just the negative of the Boltzmann-Gi
entropy:

I m~p!52S1~p!2 ln m. ~6!

Loosely speaking, Sanov’s theorem states that
A#P, mn@ f nPA#;exp@2n infpPAI m(p)# for large n ~cf.
the Boltzmann-Einstein formulaW5eS). The asymptotic
measurem is the unique minimum of the rate functionI m ,
which is continuous and strictly convex.

When we impose additional constraints onf n , the
asymptotic value changes fromm to a new distribution that
minimizesI m under the added restrictions@7,10#. If we con-
dition on the sample mean, for example,

(
i 51

m

e i f n,i~x1 , . . . ,xn!5u, ~7!

the resulting asymptotic distribution is no longerm but the
canonical distributionPi}e2be i, whereb satisfies

(
i 51

m

e i Pi5u. ~8!

It is in this sense that finding the asymptotic empirical d
tribution under Eq.~7! is equivalent to maximizingS1 under
Eq. ~8!.

More generally, imposing condition~5! results in an
asymptotic distribution that minimizesI m ~maximizesS1)
subject to Eq.~2!. This distribution is given implicitly by

Pi}exp@2b~e i2u!Pi
q21#, ~9!

whereb is such that Eq.~2! is satisfied withp replaced byP.
Comparison with Eq.~3! shows that bothp andP will agree
whenq→1.
-

r-

s

r

-

IV. COMPARISON OF THE TWO DISTRIBUTIONS

For q50, Eq. ~3! gives pi5@12a(e i2u)#/m, with a
unrestricted, while Eq.~9! implies Pi51/m. Clearly, both
agree ifa is arbitrarily chosen to be zero. However, as w
have noted,S0 is a constant function, so the entropy extrem
ization procedure may be expected to break down in
case.

Taking u to be the equilibrium valueu* 5( i 51
m e i /m also

results in general agreement betweenp and P for all qÞ0.
Indeed, by choosinga5b50 we see thatpi51/m is the
unique solution for both Eq.~3! and Eq.~9!. This agreement
simply reflects the fact that bothS1 and Sq have the same
global extremum.

Whenm52 the two constraints are sufficient to unique
determine the distribution, and for this reason general ag
ment is also expected. In particular, we find

p5P}„~e22u!1/q,~u2e1!1/q
…, ~10!

assuminge1,e2 andqÞ0. It is readily verified that Eq.~2!
is satisfied. By solving fora andb, Eqs.~3! and~9!, respec-
tively, may be satisfied as well.

Disagreement betweenp and P is therefore expected
when m>3. To show this explicitly, we may computep
from Eq. ~3! for an arbitaryu and then search for a value o
b such that Eq.~9! is satisfied whenp is substituted forP.
The claim is that a singleb cannot always be found tha
satisfies this equation for all values ofi whenm>3.

The caseq51/2 is particularly amenable to analytic stud
@11# and appears in an early application of the Tsallis e
tropy to turbulence in a two-dimensional electron plas
@12#. For this case, Eq.~3! may be solved explicitly in terms
of u to obtain

pi}F 1

m (
j 51

m

~e j2u!22~e i2u!~u* 2u!G2

. ~11!

Using a given value ofu and the correspondingp given
above, we then consider zeros of the functionsdi , where

di~b!5
exp@2b~e i2u!pi

21/2#

(
j 51

m

exp@2b~e j2u!pj
21/2#

2pi , ~12!

for i 51, . . . ,m. A plot of these functions is shown in Fig.
for selected parameter values. The failure of all three gra
to have a zero at the same value ofb indicates thatp andP
are in this case distinct.

From this example, one can derive a general neces
condition for agreement withP. Suppose that for givenq, e,
and u there exists a simultaneous solution to both Eqs.~3!
and~9!. @More generally,p may be any probability distribu-
tion satisfying Eq.~2!.# Substituting the former into the latte
we find

pi5exp@2b~e i2u!pi
q21#/Z~b!, ~13!

where
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Z~b!5(
j 51

m

exp@2b~e j2u!pi
q21#. ~14!

The value of eachpi is fixed in terms of the given param
eters, so a single value ofb must simultaneously satisfy Eq
~13! for i 51, . . . ,m. If any pi50, then Eq.~13! cannot pos-
sibly be satisfied, so suppose allpi are nonzero. For any
given j Þ i ,

b52@ ln pj1 ln Z~b!#/@~e j2u!pj
q21#. ~15!

Substituting this expression back into Eq.~13! gives

ln Z~b!5
~e i2u!pi

q21 ln pj2~e j2u!pj
q21 ln pi

~e j2u!pj
q212~e i2u!pi

q21
. ~16!

The RHS of Eq.~16! is invariant under the interchange o
i and j, so it has at mostm(m21)/2 distinct values. The

FIG. 1. Plot ofdi(b)5r i(b)2pi for e5(0,1,2), q51/2, and
u57/11, for which p5(289,121,25)/435. The positive roots a
found numerically to be 0.514 509, 0.637 715, 0.360 903 foi
51,2,3, respectively.
n-
LHS, of course, is the same for all choices ofi and j. Now,
the RHS will be independent of the choice ofi andj if either
~1! q51, ~2! m52, or ~3! pi5pj for all i and j, the latter
being equivalent tou5u* , which is equivalent toa50.
Assuming none of these three conditions hold, the RHS m
be the same for all choices ofi and j if indeed p5P. This
gives a necessary condition for agreement.

V. DISCUSSION

We have compared the probability distribution overm
states predicted from Tsallis’s maximum entropy princip
which constrains the normalizedq expectation to a valueu,
to the asymptotic frequencies when the empiricalq expecta-
tion is similarly constrained. The two will always agree
either~1! q51, ~2! m52, or ~3! u5u* . A specific example
for whichq51/2 andm53 was used to demonstrate nume
cally that the two distributions may be different. For the ca
in which none of these three conditions hold, we derive
necessary condition to be satisfied by any candidate distr
tion in order that it be identical to true asymptotic distrib
tion.

From the point of view of large deviation theory, th
maximum entropy principle specifies the overwhelming
most probable distribution to be realized by a large-sam
empirical distribution under given constraints. The uniqu
ness of the rate function in large deviation theory impl
that the Boltzmann-Gibbs entropy plays a special role in
termining this most likely distribution. For this reason, e
tropy functions such as that proposed by Tsallis may g
results that are at variance with actual sample frequen
except, as observed, in some special cases.
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